
Download free eBooks at bookboon.com

Structured Programming with C++

45

3	 Selections and Loops

3	 Selections and Loops
3.1	 Introduction

In this chapter you will learn to incorporate intelligence into your programs, i.e. the program can do different things
depending on different conditions (selections). You will also learn how to repeat certain tasks a specific number of times
or until a specific condition is fulfilled (iteration, loop). We will introduce new symbols in our JSP graphs to illustrate
selections and loops.

3.2	 Selection

A selection situation can be illustrated by the following figure:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 39

Selections and Loops
Introduction

In this chapter you will learn to incorporate intelligence into your
programs, i.e. the program can do different things depending on
different conditions (selections). You will also learn how to repeat
certain tasks a specific number of times or until a specific condition is
fulfilled (iteration, loop). We will introduce new symbols in our JSP
graphs to illustrate selections and loops.

Selection
A selection situation can be illustrated by the following figure:

If the condition is fulfilled (yes option) the program will do one thing,
else (no option) another thing.

if statement
The selection situation is in C++ coded according to the following
syntax:

Do this

Condition ?

Do that

yes no

If the condition is fulfilled (yes option) the program will do one thing, else (no option) another thing.

3.3	 if statement

The selection situation is in C++ coded according to the following syntax:

if (condition)

 statement1;

else

 statement2;

The keyword if introduces the if statement. The condition is put within parentheses. If the condition is true statement1
will be performed, otherwise statement2. Here is a code example:

if (a>b)

 greatest = a;

else

 greatest = b;

The values of two variables are compared. If a is greater than b, the variable greatest will get a’s value. Otherwise, i.e. if b
is greater than or equal to a, greatest will get b’s value. The result from this code section is that the variable greatest will
contain the greatest of a and b.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

46

3	 Selections and Loops

Sometimes you might want to perform more than one statement for an option. Then you must surround the statements
with curly brackets:

if (condition)

{

 statements

 …

}

else

{

 statements

 …

}

If the condition is true all statements in the first code section will be executed, otherwise all statements in the second
code section will be executed. Example:

if (a>b)

{

 greatest = a;

 cout << "a is greatest";

}

else

{

 greatest = b;

 cout << "b is greatest";

}

If a is greater than b, the variable greatest will get a’s value and the text “a is greatest” will be printed. Otherwise the variable
greatest will get b’s value and the text “b is greatest” will be printed.

Sometimes you don’t want to do anything at all in the else case. Then the else section is simply omitted like in the following
example:

if (sum>1000)

{

 dDiscPercent = 20;

 cout << "You will get 20 % discount";
}

If the variable sum is greater than 1000 the variable dDiscPercent will get the value 20 and the text “You will get 20%
discount” will be printed. Otherwise nothing will be executed and the program goes on with the statements after the last
curly bracket.

3.4	 Price Calculation Program

We will now create a program that calculates the total price of a product. The user is supposed to enter quantity and price
per unit of the product. If the total exceeds 500:- you will get 10 % discount, otherwise 0 %. We start with a JSP graph:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

47

3	 Selections and Loops

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 41

If a is greater than b, the variable greatest will get a’s value and the
text “a is greatest” will be printed. Otherwise the variable greatest will
get b’s value and the text “b is greatest” will be printed.

Sometimes you don’t want to do anything at all in the else case. Then
the else section is simply omitted like in the following example:

if (sum>1000)
{
 dDiscPercent = 20;
 cout << ”You will get 20 % discount”;
}

If the variable sum is greater than 1000 the variable dDiscPercent will
get the value 20 and the text “You will get 20 % discount” will be
printed. Otherwise nothing will be executed and the program goes on
with the statements after the last curly bracket.

Price Calculation Program
We will now create a program that calculates the total price of a
product. The user is supposed to enter quantity and price per unit of
the product. If the total exceeds 500:- you will get 10 % discount,
otherwise 0 %. We start with a JSP graph:

All boxes except ”Calculate discount” are rather simple to code.
“Calculate discount” requires a closer examination. It has a condition
included which says that the discount is different depending on
whether gross is less or greater than 500. We’ll break down that box:

Price

Entry Calculate
gross

Calculate
discount

Calculate
net

Print

All boxes except “Calculate discount” are rather simple to code. “Calculate discount” requires a closer examination. It
has a condition included which says that the discount is different depending on whether gross is less or greater than 500.
We’ll break down that box:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 42

A conditional situation in JSP is identified by a ring in the upper right
corner of the box. That implies that only one of the boxes will be
executed. Here is the code:

#include <iostream.h>
void main()
{
 const double dLimit = 500;
 int iNo;
 double dUnitPrice, dGross, dNet, dDisc;
 cout << ”Specify quantity and unit price”;
 cin >> iNo >> dUnitPrice;

 dGross = iNo * dUnitPrice;
 if (dGross > dLimit)
 dDisc = 10;
 else
 dDisc = 0;

 dNet = (100- dDisc) * dGross / 100;
 cout << ”Total price: ” << dNet;
}

The declaration shows a constant dLimit, which later is used to check
the gross value. The variable iNo is used to store the entered quantity
and dUnitPrice is used for the entered unit price.

It is common among programmers to use one or a few characters in
the beginning of the variable name to signify the data type of the
variable. The variable iNo has first character I (integer), and the
variable dUnitPrice has d (double).

After data entry the gross is calculated by multiplying the two entered
values (quantity * unit price). That value is stored in the variable
dGross.

Price

Entry Calculate
gross

Calculate
discount

Calculate
net

Print

gross > 500
disc = 10%

gross <= 500
disc = 0%

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Structured Programming with C++

48

3	 Selections and Loops

A conditional situation in JSP is identified by a ring in the upper right corner of the box. That implies that only one of
the boxes will be executed. Here is the code:

#include <iostream.h>

void main()

{

 const double dLimit = 500;

 int iNo;

 double dUnitPrice, dGross, dNet, dDisc;

 cout << "Specify quantity and unit price";

 cin >> iNo >> dUnitPrice;

 dGross = iNo * dUnitPrice;

 if (dGross > dLimit)

 dDisc = 10;

 else

 dDisc = 0;

 dNet = (100- dDisc) * dGross / 100;

 cout << "Total price: " << dNet;

}

The declaration shows a constant dLimit, which later is used to check the gross value. The variable iNo is used to store
the entered quantity and dUnitPrice is used for the entered unit price.

It is common among programmers to use one or a few characters in the beginning of the variable name to signify the data
type of the variable. The variable iNo has first character I (integer), and the variable dUnitPrice has d (double).

After data entry the gross is calculated by multiplying the two entered values (quantity * unit price). That value is stored
in the variable dGross.

The if statement then checks the value of dGross. If greater than dLimit (i.e. 500) the variable dDisc will get the value 10,
otherwise 0. dDisc contains the discount percent to be applied.

The net is then calculated by subtracting the discount percent from 100, which then is multiplied by dGross and divided
by 100 (to compensate for the percent value).

Finally the total price is printed.

3.5	 Comparison Operators

In the if statements in previous example codes we have so far only used the comparison operator > (greater than). Here
is a list of all comparison operators:

<	 less than

>	 greater than

<=	 less than or equal to

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

49

3	 Selections and Loops

>=	 greater than or equal to

==	 equal to

!=	 not equal to

3.6	 Even or Odd

In some situations you will need to check whether a number is evenly dividable by another number. Then the modulus
operator % is used. Below are some code examples of how to check whether a number is odd or even, i.e. evenly dividable by 2.

//If iNo is even, the remainder of the integer

//division by 2 equals 0:

if (iNo%2 == 0)

 cout >> "The number is even";

//If the remainder of the integer division by 2

//does not equal 0, the number is not dividable

//by 2:

if (iNo%2 != 0)

 cout >> "The number is odd";

//Short way of codeing. An expression not equal

//to 0 is regarded as false, otherwise true.

//If iNo is odd, iNo%2 gives a non zero value:

if (iNo%2)

 cout >> "The number is odd";

3.7	 else if

We will now study an example of a more complicated situation. Suppose the following conditions prevail:

If a customer buys more than 100 pieces, he will get 20% discount. Otherwise if the quantity exceeds 50, i.e. lies in the
interval 50-100, he will get 10%. Otherwise, i.e. if the quantity is below 50, no discount is given. The situation is shown
by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 44

if (iNo%2)
 cout >> ”The number is odd”;

else if
We will now study an example of a more complicated situation.
Suppose the following conditions prevail:

If a customer buys more than 100 pieces, he will get 20% discount.
Otherwise if the quantity exceeds 50, i.e. lies in the interval 50-100, he
will get 10%. Otherwise, i.e. if the quantity is below 50, no discount is
given. The situation is shown by the following JSP graph:

The code for this will be:

if (iNo>100)
 dDisc = 20;
else if (iNo>50)
 dDisc = 10;
else
{
 dDisc = 0;
 cout << ”No discount”;
}

Here we use the keyword else if.

You can use any number of else if-s to cover many conditional cases.

qty > 100

Yes
disc = 20%

No
qty > 50

Yes
disc = 10%

No
disc = 0%
message

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

50

3	 Selections and Loops

The code for this will be:

if (iNo>100)

 dDisc = 20;

else if (iNo>50)

 dDisc = 10;

else

{

 dDisc = 0;

 cout << "No discount";

}

Here we use the keyword else if.

You can use any number of else if-s to cover many conditional cases.

3.8	 and (&&), or (||)

The situation with different discount percentages for different quantity intervals can be solved in another way, namely by
combining two conditions. In common English it can be expressed like this:

If the quantity is less than 100 and the quantity is greater than 50, the customer will get 10% discount.

Here we combine two conditions:
- If the quantity is less than 100

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Structured Programming with C++

51

3	 Selections and Loops

and
- and the quantity is greater than 50

The combination of the conditions means that the quantity lies in the interval 50-100. Both conditions must be fulfilled
in order to get 10%. The conditions are combined with “and” which is a logical operator. It is written && in C++. The
code will then be:

if (iNo<100 && iNo>50)

 dDisc = 10;

Suppose the situation is this:

If the quantity is greater than 100 or the total order sum is greater than 1000, the customer will get 20% discount.

Here we combine the conditions:
- If the quantity is greater than 100
eller
- or the total order sum is greater than 1000

In both cases the customer has bought so much that he will get 20% discount. One of the conditions is sufficient to get
that discount. The conditions are combined with the logic operator “or”, which is written || in C++. The code for this
situation will be:

if (iNo>100 || dSum>1000)

 dDisc = 20;

3.9	 Conditional Input

In many situations you cannot predict what a user is going to enter. It might happen that the user enters characters when the
program expects integers, or that he does not enter anything at all but just press Enter. Then you can use conditional input:

if (cin >> iNo)

 ...

To understand how this code works you must know that cin is a function that returns a value. If reading of the value to
the variable iNo succeeded, the return value from cin is true, otherwise false. Here is a code section that shows how it
can be used:

cout << "Specify quantity: ";

if (cin >> iNo)

 dTotal = iNo * dUnitPrice;

else

{

 cout << "Input error";

 cin.clear();

 cin.get();

}

First we prompt the user for a quantity. The the program halts (cin) and waits for a vlue. If data entry turned out well,
the whole condition is true, and the total price is calculated.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

52

3	 Selections and Loops

If the data entry failed, i.e. if the user entered letters or just pressed Enter, the condition is false and the statements after else
are executed. The user will get a message about input error, the keayboard buffer is cleared (cin.clear()) and the next character
in the queue is read (cin.get()). This clean-up procedure must be performed to be able to enter new values to the program.

3.10	 The switch statement

In addition to the if statement there is another tool that allows you to perform different tasks depending on the
circumstances. The tool is called switch statement and is best accommodated to the situation when checking a value
against several alternatives. A good example is a menu where the user enters a menu option (1, 2, 3 ... or A, B, C ...) to
make the program do different things depending on the user’s choice.

The switch statement has the following syntax:

switch (opt)

{

 case 'A':

 //statements

 break;

 case 'B':

 //statements

 break;

 …

 default:

 cout << "Wrong choice";

 break;

}

First comes the keyword switch. Within parenthesis after switch there is the variable to be checked. It is checked against
the values after the different case keywords. If for instance opt has the value ‘A’, i.e. opt is a char variable in the example
above, then the statements below case ‘A’ are executed. Note that the keyword break must be found at the end of each
case block. If break is omitted, the program will continue into the next case block. Note also that there must be a colon
(:) after each case line. The default block takes care of all other options, i.e. if the variable opt does not contain any of the
values ‘A’, ‘B’ etc. then the statements in the default block will be executed. The entire switch block should be surrounded
by curly brackets.

3.11	 Menu Program

We will now write a menu program that illustrates how the switch statement can be used. First, the user is prompted
for two numbers, and then a menu is displayed where the user can select whether to view the greatest, the least, or the
average of the two numbers. The screen will look like this:

Enter 2 numbers: 7 5

1. Greatest

2. Least

3. Average

Select:

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

53

3	 Selections and Loops

First, the user has entered the numbers 7 and 5. Then a menu is displayed where the user has to select 1, 2 or 3, depending
on what he wants to view.

We will first draw a JSP graph that explains the process:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 47

is a char variable in the example above, then the statements below
case ‘A’ are executed. Note that the keyword break must be found at
the end of each case block. If break is omitted, the program will
continue into the next case block. Note also that there must be a colon
(:) after each case line. The default block takes care of all other
options, i.e. if the variable opt does not contain any of the values ‘A’,
‘B’ etc. then the statements in the default block will be executed. The
entire switch block should be surrounded by curly brackets.

Menu Program
We will now write a menu program that illustrates how the switch
statement can be used. First, the user is prompted for two numbers,
and then a menu is displayed where the user can select whether to
view the greatest, the least, or the average of the two numbers. The
screen will look like this:

Enter 2 numbers: 7 5

1. Greatest
2. Least
3. Average

Select:

First, the user has entered the numbers 7 and 5. Then a menu is
displayed where the user has to select 1, 2 or 3, depending on what he
wants to view.

We will first draw a JSP graph that explains the process:

First, the user enters two numbers. Then the menu is displayed on the
screen and the user selects an option. Finally the requested action is
performed.

The requested action can be one of four options, so we break down the
box ”Perform action”:

Menu Prog

Enter values Show menu Select Perform action

First, the user enters two numbers. Then the menu is displayed on the screen and the user selects an option. Finally the
requested action is performed.

The requested action can be one of four options, so we break down the box ”Perform action”:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 48

Since we have a selection situation where only one of the options
should be performed, we indicate this with a circle in the upper right
corner in each selection box.

The four options contain some logic, so we break down the JSP graph
further:

In the ”Show greatest” case we perform a check: if iNo1 is the
greatest, we print it, otherwise we print iNo2. The “Show least” is
analoguous. In the “Show average” case we add the two numbers and
divide by 2.

The code will be this:

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

dNo1 >
Show dNo1

dNo2 >
Show dNol2

dNo1 <
Show dNo1

dNo2 <
Show dNo2

dNo1+dNo2
/2

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

54

3	 Selections and Loops

Since we have a selection situation where only one of the options should be performed, we indicate this with a circle in
the upper right corner in each selection box.

The four options contain some logic, so we break down the JSP graph further:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 48

Since we have a selection situation where only one of the options
should be performed, we indicate this with a circle in the upper right
corner in each selection box.

The four options contain some logic, so we break down the JSP graph
further:

In the ”Show greatest” case we perform a check: if iNo1 is the
greatest, we print it, otherwise we print iNo2. The “Show least” is
analoguous. In the “Show average” case we add the two numbers and
divide by 2.

The code will be this:

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

Menu prog

Enter values

Show menu

Select

Perform action

Show
greatest

Show
least

Show
average

Err.
msg.

dNo1 >
Show dNo1

dNo2 >
Show dNol2

dNo1 <
Show dNo1

dNo2 <
Show dNo2

dNo1+dNo2
/2

In the “Show greatest” case we perform a check: if iNo1 is the greatest, we print it, otherwise we print iNo2. The “Show
least” is analoguous. In the “Show average” case we add the two numbers and divide by 2.

The code will be this:

#include <stdlib.h>

#include <iostream.h>

void main()

{

 int iOpt;

 double dNo1, dNo2;

 cout << "Enter 2 numbers: ";

 cin >> dNo1 >> dNo2;

 system("cls");

 cout << "1. Greatest" << endl;

 cout << "2. Least" << endl;

 cout << "3. Average" << endl;

 cout << endl << "Select: ";

 cin >> iOpt;

 switch (iOpt)

 {

 case 1:

 if (dNo1>dNo2)

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

55

3	 Selections and Loops

 cout << dNo1;

 else

 cout << dNo2;

 cout << " is the greatest";

 break;

 case 2:

 if (dNo1<dNo2)

 cout << dNo1;

 else

 cout << dNo2;

 cout << " is the least";

 break;

 case 3:

 cout << "The average is " << (dNo1+dNo2)/2;

 break;

 default:

 cout << "Wrong choice";

 break;

 }

}

The header file stdlib.h is needed to be able to clean the screen with system(“cls”), which is done after the user has entered
the two values. Then we print the menu on the screen and the user enters his choice (1, 2 eller 3) to the variable iOpt.

The switch statement will then check the variable iOpt. If it is 1, the statements after “case 1” are executed. There we check
which of the two numbers are the greatest and print it. In the same way the least number is printed under “case 2”. In
case of 3, the average is calculated and printed. If the user has entered anything else, the default statements are executed.

3.12	 Loops

We will now continue with another powerful tool within programming, that can make the program perform a series of
operations a specific number of times. Sometimes, the number of times, or the number of iterations, decided from start,
sometimes it depends on the circumstances. We begin with an example:

We want to print a list of the numbers 1-10 and their squares:

1 1
2 4
3 9
etc.

We have a variable, iNo, which first has the value 1. We print it and the square of it. Then we increase the value of iNo by 1
and repeat the process, i.e. we print iNo and the square of iNo. Then we increase iNo again etc. This goes on until iNo = 10.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

56

3	 Selections and Loops

Thus, we have a series of operations (print iNo, print the square of iNo) which is repeated 10 times. A repetition is called
a loop. It is illustrated by the following JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 50

Loops
We will now continue with another powerful tool within
programming, that can make the program perform a series of
operations a specific number of times. Sometimes, the number of
times, or the number of iterations, decided from start, sometimes it
depends on the circumstances. We begin with an example:

We want to print a list of the numbers 1-10 and their squares:

1 1
2 4
3 9
etc.

We have a variable, iNo, which first has the value 1. We print it and
the square of it. Then we increase the value of iNo by 1 and repeat the
process, i.e. we print iNo and the square of iNo. Then we increase iNo
again etc. This goes on until iNo = 10.

Thus, we have a series of operations (print iNo, print the square of
iNo) which is repeated 10 times. A repetition is called a loop. It is
illustrated by the following JSP graph:

First the variable iNo is set = 1. Then a loop “Print values until
iNo=10” is started. The fact that it is a loop is shown by the
subordinate boxes having an asterix in the upper right corner.

The loop consists of three boxes, which in turn print the value of iNo,
the value of iNo * iNo (i.e. the square of iNo), and increase the value
of iNo by 1. The loop goes on until iNo has reached the value 10.

Squares

iNo = 1 Print values until iNo=10

Print iNo Print iNo * iNo Increase
iNo

* * *

First the variable iNo is set = 1. Then a loop “Print values until iNo=10” is started. The fact that it is a loop is shown by
the subordinate boxes having an asterix in the upper right corner.

The loop consists of three boxes, which in turn print the value of iNo, the value of iNo * iNo (i.e. the square of iNo), and
increase the value of iNo by 1. The loop goes on until iNo has reached the value 10.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Structured Programming with C++

57

3	 Selections and Loops

3.13	 The while Loop

Here is a code section that performs the task:

iNo = 1;

while (iNo <= 10)

{

 cout << iNo << " " << iNo * iNo << endl;

 iNo++;

}

First the variable iNo gets the value 1. Then the loop follows starting with the keyword while, followed by a condition
within parenthesis. The operations to be repeated are given within the curly brackets immediately after the while condition.

The while line can be read: ”As long as iNo is less than or equal to 10”. For each turn of the loop iNo and iNo*iNo are
printed on the screen, separated by a space and followed by a line break. At the end of the loop iNo is increased by 1.

3.14	 The for Loop

The task was solved by the while loop above. The for loop is another type of loop:

for (iNo=1; iNo <= 10; iNo++)

{

 cout << iNo << " " << iNo * iNo << endl;

}

This loop does exactly the same thing, namely prints the numbers 1-10 and their squares. The code block however contains
only one statement. The actual increase of the iNo value is managed by the parenthesis after the keyword for.

The parenthesis contains three parts, separated by semicolons:

for (iNo=1; iNo <= 10; iNo++)

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 51

The while Loop
Here is a code section that performs the task:

iNo = 1;
while (iNo <= 10)
{
 cout << iNo << " " << iNo * iNo << endl;
 iNo++;
}

First the variable iNo gets the value 1. Then the loop follows starting
with the keyword while, followed by a condition within parenthesis.
The operations to be repeated are given within the curly brackets
immediately after the while condition.

The while line can be read: ”As long as iNo is less than or equal to
10”. For each turn of the loop iNo and iNo*iNo are printed on the
screen, separated by a space and followed by a line break. At the end
of the loop iNo is increased by 1.

The for Loop
The task was solved by the while loop above. The for loop is another
type of loop:

for (iNo=1; iNo <= 10; iNo++)
{
 cout << iNo << " " << iNo * iNo << endl;
}

This loop does exactly the same thing, namely prints the numbers 1-10
and their squares. The code block however contains only one
statement. The actual increase of the iNo value is managed by the
parenthesis after the keyword for.

The parenthesis contains three parts, separated by semicolons:
for (iNo=1; iNo <= 10; iNo++)

The initiation part sets a start value of a variable, often called loop
variable, since it controls when to interrupt the loop. The condition

initiation condition increase

The initiation part sets a start value of a variable, often called loop variable, since it controls when to interrupt the loop.
The condition part is checked for each turn of the loop. When the condition is false, the loop is interrupted. The increase
part changes the value of some variable; mostly it is the loop variable that is increased by 1.

However, you don’t have to start with 1 or increase by 1 for each turn of the loop. The following code example shows how
the variable iNo from start is set to 2. The increase part will add 2 for each turn of the loop:

for (iNo=2; iNo <= 10; iNo=iNo+2)

{

 cout << iNo << " " << iNo * iNo << endl;

}

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

58

3	 Selections and Loops

3.14.1	 while or for

When should you use the while loop and when the for loop? Many times you can solve the problem with both loop
types, and many times it is a question about personal preference. In general, however, if you can predict the number of
turns of the loop, the for loop is the best one. If there is an unpredictable situation, e.g. if the loop goes on until the user
enters a specific value, or that the random number generator provides a specific number, use the while loop. We will use
both alternatives.

3.15	 Addition Program

We will create a program that adds the integers 1 + 2 + 3 + 4 + … up to the limit specified by the user. The user should
first enter the requested limit. Then we will use a loop that goes from 1 to that limit and sums the numbers. We will then
need a variable, which is a kind of accumulater, which stores the sum.

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 52

part is checked for each turn of the loop. When the condition is false,
the loop is interrupted. The increase part changes the value of some
variable; mostly it is the loop variable that is increased by 1.

However, you don’t have to start with 1 or increase by 1 for each turn
of the loop. The following code example shows how the variable iNo
from start is set to 2. The increase part will add 2 for each turn of the
loop:

for (iNo=2; iNo <= 10; iNo=iNo+2)
{
 cout << iNo << " " << iNo * iNo << endl;
}

while or for
When should you use the while loop and when the for loop? Many
times you can solve the problem with both loop types, and many times
it is a question about personal preference. In general, however, if you
can predict the number of turns of the loop, the for loop is the best
one. If there is an unpredictable situation, e.g. if the loop goes on until
the user enters a specific value, or that the random number generator
provides a specific number, use the while loop. We will use both
alternatives.

Addition Program
We will create a program that adds the integers 1 + 2 + 3 + 4 + … up
to the limit specified by the user. The user should first enter the
requested limit. Then we will use a loop that goes from 1 to that limit
and sums the numbers. We will then need a variable, which is a kind
of accumulater, which stores the sum.

We begin with a JSP graph:

Addition

Enter limit Calculate sum 1-limit

Accumulate

Print

*

First the user is prompted for a limit. The following loop goes from 1 to limit with the loop variable i. For each turn of
the loop we add the value of i to the sum, i.e. we accumulate the numbers. Finally we print the accumulated sum. Note
that the operation to be repeated (Accumulate) in the loop is indicated by an asterix in the JSP graph.

#include <iostream.h>

void main()

{

 int i, iLimit, iSum = 0;

	 cout << "Enter limit: ";

	 cin >> iLimit;

	 for (i=1; i<=iLimit; i++)

		 iSum += i;

	 cout << "The sum = " << iSum << endl;

}

First, a number of variables are declared. The variable i is used as loop variable, iLimit is used for storage of the user
specified limit, and iSum the accumulated sum. Note that, since iSum is increased by a value all the time, it must have a

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

59

3	 Selections and Loops

start value. A declared variable does not automatically get the value 0 or any other value. That is why we must initiate it
with 0. The other variables will get fix values during the execution of the program, so they need not be initiated.

The user will then enter a value to be stored in the variable iLimit. The loop then sets a start value = 1 to the loop variable
i. The for-condition is that i is not allowed to exceed iLimit. For each turn of the loop the loop variable is increased by 1.
That means that the value stated by the user controls the number of turns of the loop.

The repetition code block of the loop contains only one statement. Therefore we don’t need any curly brackets surrounding
the loop. If, however, the repetition code block contains several statements, they must be surrounded by curly brackets.
Compare the if statement, which works in the same way.

The repetition code block contains this statement:

iSum += i;

which implies that the variable iSum is increased by i for each turn of the loop. This means that the variable iSum will
contain the sum 1 + 2 + 3 + …

Finally the value of iSum is printed.

An optional way of writing the for line:

for (int i=1; i<=iLimit; i++)

Here we declare the variable i inside the for statement. The variable should then not be declared earlier in the program.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Structured Programming with C++

60

3	 Selections and Loops

Still another way of coding:

for (int i=1; i<=iLimit; iSum+=i++);

Here the increase part of the for statement contains the code iSum+=i++. Here two things happen, namely that the
variable iSum is increased by the value of i, and then i is increased by 1 (i++). This means that we don’t need any repetition
code block, so we put a semicolon directly after the parenthesis. Consequently the loop consists of one single line.

3.16	 Double Loop

We will now how to use a double loop, i.e. a loop inside another loop. The inner loop will then do all its loop turns for
each turn of the outer loop. Here is an example.

We will write a program that figures out all combinations of two integers whose product is 36:

1 x 36
2 x 18
3 x 12
etc.

We let the outer loop control the first factor, which runs from 1 to 36. For each value of the first factor we will go through
the values 1-36 for the second factor and check if the product equals 36. If so, the factors are printed.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 55

Under ”Check product” we have an outer loop with the loop variable i
and an inner loop with loop variable j. Inside the loop we check if the
product of i and j makes 36. If so, i and j are printed.

Here’s the code:

#include <iostream.h>
void main()
{
 int i, j;
 cout << "Calculation of produdt" << endl;
 for (i=1; i<=36; i++)
 {
 for (j=1; j<=36; j++)
 {
 if (i*j == 36)
 cout << i << " and " << j << endl;
 }
 }
}

In the double for loop the variable i gets the value 1. The inner loop
starts and lets j run through the values 1-36. For each value of j we
check if i*j makes 36. If so, we print the values of i and j. When the
inner loop has finished, the next turn of the outer loop will start where

Product

Write text Check product

i = 1-36
*

j = 1-36
*

Product = 36

Print factors ---
o o

Under “Check product” we have an outer loop with the loop variable i and an inner loop with loop variable j. Inside the
loop we check if the product of i and j makes 36. If so, i and j are printed.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

61

3	 Selections and Loops

Here’s the code:

#include <iostream.h>

void main()

{

 int i, j;

	 cout << "Calculation of produdt" << endl;

	 for (i=1; i<=36; i++)

	 {

	 for (j=1; j<=36; j++)

	 {

	 if (i*j == 36)

	 cout << i << " and " << j << endl;

	 }

	 }

}

In the double for loop the variable i gets the value 1. The inner loop starts and lets j run through the values 1-36. For each
value of j we check if i*j makes 36. If so, we print the values of i and j. When the inner loop has finished, the next turn of
the outer loop will start where i is set =2, and the inner loop starts once again and lets j run from 1 to 36.

3.17	 Roll Dice

So far we have mainly used the for loop. We will now look at a few situations where the while loop is preferred. We will
write a program that rolls a dice until we get 6. Then the number of rolls is printed.

Here we cannot predict how long the loop will run. That depends on the numbers being generated. Therefore, the while
loop is perfect.

Let us first create a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 56

i is set =2, and the inner loop starts once again and lets j run from 1 to
36.

Roll Dice
So far we have mainly used the for loop. We will now look at a few
situations where the while loop is preferred. We will write a program
that rolls a dice until we get 6. Then the number of rolls is printed.

Here we cannot predict how long the loop will run. That depends on
the numbers being generated. Therefore, the while loop is perfect.

Let us first create a JSP graph:

We begin with initiating the random number generator to a randomly
selected start position. Then the loop is repeated until we get 6. For
each turn of the loop we roll the dice once more and increase the
number of rolls by 1. When 6 has been achieved, the loop is
terminated and the number of rolls is printed. Here’s the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iRoll=0, iNoOfRolls=0;
 srand(time(0));
 while (iRoll != 6)
 {
 iRoll = rand()%6+1;
 iNoOfRolls++;
 }
 cout << iNoOfRolls;
}

Dice

Initiate
random no
generator

Roll until 6

Roll

Print

* Increase no. *

We begin with initiating the random number generator to a randomly selected start position. Then the loop is repeated
until we get 6. For each turn of the loop we roll the dice once more and increase the number of rolls by 1. When 6 has
been achieved, the loop is terminated and the number of rolls is printed. Here’s the code:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

62

3	 Selections and Loops

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll=0, iNoOfRolls=0;

 srand(time(0));

 while (iRoll != 6)

 {

 iRoll = rand()%6+1;

 iNoOfRolls++;

 }

 cout << iNoOfRolls;

}

The header file stdlib.h is needed for the random number functions, and time.h is needed for the function time(0) at
initiation of the generator.

The variable iRoll is used to store each roll. The reason for initiating it with 0 at the declaration is that it must hold a
value when the while loop starts. The value must be something else than 6, otherwise the loop will not start. Any other
value will do.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Structured Programming with C++

63

3	 Selections and Loops

The variable iNoOfRolls is used to count the number of rolls. It must be initiated to 0, since it is increased by 1 all the time.

The function srand() initiates the generator to a randomly selected start position.

The while loop contains the condition that iRoll must not be 6. As long as no 6 is achieved the loop runs one more turn.
For each turn we make another roll stored in iRoll, and the variable iNoOfRolls is increased by 1.

When we get 6, the while condition is false and the loop is terminated. The variable iNoOfRolls then contains the number
of rolls, which is printed.

A variant of the program looks like this:

#include <iostream.h>
#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll, iNoOfRolls=0;

 srand(time(0));

 do

 {

 iRoll = rand()%6+1;

 iNoOfRolls++;

 } while (iRoll != 6);

 cout << iNoOfRolls;

}

The big difference is that the loop has its condition after the loop body instead of before. The effect of this is that at
least one turn of the loop is executed before the condition is tested. This also means that the variable iRoll needs not be
initialized to 0. It will anyway get a new value during the first turn of the loop.

The keyword ’do’ is before the loop body, and ‘while’ followed by the condition right after the ending curly bracket. You
must have a semicolon immediately after the condition.

3.18	 Two Dice Roll

We will now write a program which repeatedly rolls two dice and checks if the two rolls are equal. When two equal rolls
have been achieved, the process is terminated and the number of “double” rolls is printed. We start with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 58

Two Dice Roll
We will now write a program which repeatedly rolls two dice and
checks if the two rolls are equal. When two equal rolls have been
achieved, the process is terminated and the number of “double” rolls is
printed. We start with a JSP graph:

When having initiated the random number generator to a random start
position, the loop begins. For each turn, we roll the 1st and then the 2nd
dice, and then increase the counter by 1. When the two rolls are equal
the loop is terminated and the number of “double” rolls is printed.
Here is the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iRoll1, iRoll2, iCounter=0;
 srand(time(0));
 do
 {
 iRoll1 = rand()%6+1;
 iRoll2 = rand()%6+1;
 iCounter++;
 } while (iRoll1 != iRoll2);
 cout << "The rolls were " << iRoll1 << endl;
 cout << "Number of attempts = " << iCounter << endl;
}

The program is similar to the previous with the difference that here we
have two variables which store the rolls. Inside the loop iRoll1 and
iRoll2 get their values and the number of “double” rolls is increased
by 1.

Initiate
random no.
generator

Roll until equal

Roll 2nd

Print

* Increase no. *

Dice2

Roll 1st *

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

64

3	 Selections and Loops

When having initiated the random number generator to a random start position, the loop begins. For each turn, we roll
the 1st and then the 2nd dice, and then increase the counter by 1. When the two rolls are equal the loop is terminated and
the number of “double” rolls is printed. Here is the code:

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 int iRoll1, iRoll2, iCounter=0;

	 srand(time(0));

	 do

	 {

		 iRoll1 = rand()%6+1;

		 iRoll2 = rand()%6+1;

		 iCounter++;

	 } while (iRoll1 != iRoll2);

	 cout << "The rolls were " << iRoll1 << endl;

	 cout << "Number of attempts = " << iCounter << endl;

}

The program is similar to the previous with the difference that here we have two variables which store the rolls. Inside
the loop iRoll1 and iRoll2 get their values and the number of “double” rolls is increased by 1.

Since the while condition comes after the loop body, at least one loop turn will be executed. The condition is that iRoll1
is not equal to iRoll2. If they are equal the loop is terminated and the dice score and the number of rolls are printed.

3.19	 Breaking Entry with Ctrl-Z

We will now use the while loop condition to contain a user input with cin. The program will prompt the user for repeated
entry of numbers. The entered numbers are summed. When the user presses Ctrl-Z the entry of numbers is interrupted
and their average is printed. Here is the code:

#include <iostream.h>

void main()

{

 int iSum=0, i=0, iNo;

	 cout << "Enter a number: ";

	 while (cin >> iNo)

	 {

		 iSum += iNo;

		 i++;

		 cout << "Enter one more number: ";

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

65

3	 Selections and Loops

	 }

	 cout << "Average = " << (double)iSum/i << endl;

}

The variable iSum is used to store the sum of the entered numbers. The variable i counts the number of numbers.

The while condition contains input of a number from the user. If the input succeeds, the cin function will return a true
value. One turn of the loop is then executed. In the loop the variable iSum is increased by the entered value and the
variable i, which counts the values, is increased by 1. At the end of the loop the user is prompted for yet another value.

When one turn of the loop has been run, the condition is tested again, i.e. the program halts and waits for a new entry. As
long as the user enters numbers, a new loop turn is run. If the user presses Ctrl-Z the function cin returns a false value,
which makes the loop to be terminated. Then the average is printed, which is calculated by dividing the sum by the number
of values. Since the variable iSum is an integer we must type cast it to double before the division to not loose the decimals.

3.20	 Pools

Programming a pools line (1, X or 2) with 13 football matches is another example of how to use the random number
generator in a loop. Since we know that a pools line contains 13 matches, we use a for loop. First we create a JSP graph:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Structured Programming with C++

66

3	 Selections and Loops

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 60

Pools
Programming a pools line (1, X or 2) with 13 football matches is
another example of how to use the random number generator in a
loop. Since we know that a pools line contains 13 matches, we use a
for loop. First we create a JSP graph:

When having intitated the random number generator, the loop begins
which should create 1, X or 2 for 13 matches. We do that by create a
random number which is 0, 1 or 2. If it is 0, we print ‘1’. If it was 1,
we print ‘X’. If it was 2, we print ’2’. Here is the code:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
void main()
{
 int iNo;
 srand(time(0));
 for (int i=1; i <= 13; i++)
 {
 iNo = rand()%3;
 switch (iNo)
 {
 case 0:
 cout << "1" << endl;
 break;
 case 1:
 cout << " X" << endl;
 break;
 case 2:

1: print X

Initiate
random no.
generator

Write pools line (13 matches)

Print 1,X,2 *

2: print 2

Pools

Random 0,1,2 *

0: print 1
o o o

When having intitated the random number generator, the loop begins which should create 1, X or 2 for 13 matches. We
do that by create a random number which is 0, 1 or 2. If it is 0, we print ‘1’. If it was 1, we print ‘X’. If it was 2, we print
’2’. Here is the code:

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void main()

{

	 int iNo;

	 srand(time(0));

	 for (int i=1; i <= 13; i++)

	 {

		 iNo = rand()%3;

		 switch (iNo)

		 {

		 case 0:

			 cout << "1" << endl;

			 break;

		 case 1:

			 cout << " X" << endl;

			 break;

		 case 2:

			 cout << " 2" << endl;

			 break;

		 }

	 }

}

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

67

3	 Selections and Loops

When having initiated the random number generator with srand(), the for loop runs from 1 to 13.

For each loop turn we create a random number in the interval 0-2, which is stored in the variable iNo. It is then checked
by the switch statement. The different case blocks takes care of the cases 0, 1 and 2. For the value 0, we print ‘1’. For the
value 1, we print ‘X’ preceded by some blanks which makes the X’s appear in a separate column. For the value 2, we print
‘2’ preceded by some more blanks.

3.21	 Equation

We will now solve a math problem, namely to solve an equation of 2nd degree. To simplify, we assume that the equation
has only integer roots. The equation is:

x2 - 6x + 8 = 0

Since it is of the 2nd degree it has two roots.

Finding the solution to an equation means to find x values such that the left part (LP) equals the right part (RP), i.e.
equal to 0 in our equation.

We create a loop which in turn tests the values 1, 2, 3 … up to 100. The test procedure is to replace x by 1 in LP and
calculate if LP equals 0. Then we replace x by 2 and repeat the process until we find two values that match the equation
or until 100 has been reached.

First, we create a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 62

First, we create a JSP graph:

The variable iNo is used to count the number of roots to the equation
that we have got. The variable iRoot is the x value in the equation
which in each loop turn is used to calculate LP. The value of iRoot
starts with 1 and is increased by 1 for each loop turn. If the value of
LP = 0, we increase the value of iNo and print the root (x value).

Here is the code:

#include <iostream.h>
void main()
{
 int iNo=0, iRoot=1, LP;
 while ((iNo<2) && (iRoot<=100))
 {
 LP = iRoot * iRoot - 6 * iRoot + 8;
 if (LP==0)
 {
 iNo++;
 cout << iRoot << endl;
 }
 iRoot++;
 }
}

First, the value of iNo is set to 0, since it later will be increased by 1
for each found root. The first root value to be tested is 1 (iRoot=1)..

Incr. iNo,
print

LP = 0 ?

Initiate
variables

Calculate roots utnil
iNo=2 or iRoot>100

Equation

o

Calc. LP Incr. iRoot * * *

o

The variable iNo is used to count the number of roots to the equation that we have got. The variable iRoot is the x value
in the equation which in each loop turn is used to calculate LP. The value of iRoot starts with 1 and is increased by 1 for
each loop turn. If the value of LP = 0, we increase the value of iNo and print the root (x value).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

68

3	 Selections and Loops

Here is the code:

#include <iostream.h>

void main()

{

 int iNo=0, iRoot=1, LP;

	 while ((iNo<2) && (iRoot<=100))

	 {

		 LP = iRoot * iRoot - 6 * iRoot + 8;

		 if (LP==0)

		 {

			 iNo++;

			 cout << iRoot << endl;

		 }

		 iRoot++;

	 }

}

First, the value of iNo is set to 0, since it later will be increased by 1 for each found root. The first root value to be tested
is 1 (iRoot=1)..

The loop has the condition that iNo should be less than 2, since the number of roots to an equation of 2nd degree is not
greater than 2, and iRoot must not exceed 100, since we don’t examine roots over 100.,

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Structured Programming with C++

69

3	 Selections and Loops

The first statement in the loop body calculates the value of the left part (LP). This is the actual definition of the equation
(x2 - 6x + 8). If this value is = 0, we increase iNo by 1 and the root is printed.

Then we increase the root value by 1.

3.22	 Interrupting a Loop - break

Many times you don’t want to set an upper limit on the number of loop turns. Then you can use a condition for the while
loop which always is true, for example:

while (1==1)

1 is obviously always equal to 1, so the loop will run an infinite number of turnes. Therefore we need a possibility to,
from inside the loop body, interrupt it, i.e. jump out of it and continue with the first statement after the loop. That is
accomplished with the keyword:

break;

We will give a little program example of this. We will write a program where the user repeatedly is prompted for a number,
and the program will respond with the square root of the number. Since you cannot calculate the square root of a negative
number, we will inside the loop body check whether the user has entered a negative value. If so, the loop is interrupted.
Here is the code:

#include <math.h>

#include <iostream.h>

void main()

{

 double dNo;

 while (1==1)

 {

 cout << "Enter a number ";

 cin >> dNo;

 if (dNo<=0)

 break;

 cout << "The square root of the number is " << sqrt(dNo)

 << endl;

 }

}

To be able to calculate the square root, we must include math.h, which contains code for a large number of math functions.

The while condition is that 1 equals 1, which always is true, i.e. we have created an infinite loop. Inside the loop body the
user is first prompted for a number. If the number is less than 0, the loop is interrupted with break. If the number is 0 or
positive, the loop goes on with calculating and printing the square root. The function sqrt() is used for this calculation.

Of course you could solve this problem without using an infinite loop, but regard this as an alternative to create loops.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

70

3	 Selections and Loops

3.23	 Summary

In this chapter we have learnt to incorporate intelligence into our programs by means of selections. We have also learnt
how if statements can be used to check different situations and perform different tasks depending on the circumstances.
We have showed how to combine various conditions in complex situations with the operators && and ||. We have also
learnt how to use the modulus operator % and how to perform conditional input of values from the user by placing the
input statement with cin inside the if condition.

An alternative to the if statement is the switch statement which is often used in connection with menu programs.

We have in this chapter also introduced loops, which are used to perform a series of operations a repeated number of
times. The main loops are the for loop and the while loop.

We have also extended our knowledge about the random number generator, which has been used to roll a dice and play
pools game. Finally we have spent some effort by solving mathematical equations by means of loops.

3.24	 Exercises

1.	 Write a program that prompts the user for two values and prints the least of them.
2.	 Write a program that prompts the user for his age. If he is younger than 15, the text “You’ll got to stick to

the bike some more time” should be printed. Otherwise the text ”You are allowed to drive moped” should be
printed.

3.	 Improve the previous program so that it also pays attention to the driving license age of 18.
4.	 Write a program that prompts the user for three numbers and prints the greatest of them.
5.	 Start from the Price Calculation program earlier in this chapter and apply a new discount of 5% if the gross

value exceeds 250:- .
6.	 Continue with the previous program and write code for tax calculation, which is performed so that the user

is asked for whether it is food or other products that he has bought. Let the user enter 1 for food and 2 for
other products. The program should then add 12% tax for food, or 25% for other products. The tax amount
and the final customer price should also be printed.

7.	 Suppose that the following taxing rules apply:
a)	 Income below 10 000:- is not taxable.
b)	 For income of 10 000 and more the base tax is always 50%.
c)	 For income below 50 000 a tax reduction of 5 000:- is given.
d)	 For income over 100 000 there is an extra tax addition of
 	 20% of the portion exceeding 100 000.
Write a program that prompts the user for his income and calculates the total tax.

8.	 Write a program that defines whether an entered number is odd or even.
9.	 Improve the previous program so that it also defines whether the number could be evenly divided by 3.
10.	Write a program that prompts the user for how many coins of values 0,50-crowns, 1-crown, 5-crowns and

10-crowns he has in his wallet. The program should then print the total value.
11.	Write a program that prompts the user for a price. A discount percent should then be printed according to

the following table:
0-100		 0%
100-500	 5%

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

71

3	 Selections and Loops

500-1000	 8%
1000-2000	 10%
2000-5000	 15%
over 5000	 18%

12.	Write a program that prompts the user for a quantity and a unit price of a product. If the quantity exceeds
20 and the total price exceeds 1000 kr, the user will get 20% discount. Otherwise, if either the quantity
exceeds 20 or the total price exceeds 1000, he will get 10% discount. In all other cases no discount will be
given. The total price and the discount should be printed.

13.	Use the menu program with the switch statement earlier in this chapter and add the option:
9. Exit

14.	Extend the previous program with the option:
4. Product
i.e. the numbers should be multiplied.

15.	Write a menu program that prompts the user for three numbers and then displays the following menu:
1. Least
2. Greatest
3. Sum
The program should also print the requested information.

16.	Write a program that prints the numbers 1-10 and their squares.
17.	Extend the previous program to also print the cubes of the values.
18.	Write a program that prompts the user for integers until the entered number = 0.
19.	Extend the previous program so that it also prints the sum of all entered numbers.
20.	Write a program that prompts the user for integers and prints a message for each integer whether it is

positive or negative. This is repeated until the entered value equals 0.
21.	Write a program that prompts the user for integers until the entered value is evenly dividable by 3.
22.	In many sports the competitors get scores which are the sum of the scores given by each judge after the

highest and lowest score has been deducted. Write a program that prompts for one score from a judge at a
time, adds the score and keeps track of the highest and lowest score. The entry is interrupted with Ctrl-Z.
Then the competitor’s total score should be printed after having deducted the highest and lowest score.

23.	Start from the Double Loop program earlier in this chapter, which calculates pair of numbers whose product
equals 36. Change it to let the user enter the product to be used.

24.	Write a program that calculates the quotient of two numbers. If the quotient = 5, the numbers should be
printed. All numbers up to and including 100 should be examined.

25.	Start from the Roll Dice earlier in this chapter. Complete it with a printout of all rolls.
26.	Change the previous program to roll the dice until it shows 5 or 6.
27.	Start from the Two Dice Roll program that rolls two dice at a time. Complete it with a printout of all pair or rolls.
28.	Change the previous program to roll the dice until the sum of two rolls is 12.
29.	Start from the Pools program earlier in this chapter. Extend it to print 5 lines of pools beside each other, e.g.:

1 X 2 X 1

 X 2 1 1 X

1 1 X 2 2

etc.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

72

3	 Selections and Loops

30.	Write a program that randomly prints the numbers 0 and 1. It can for instance illustrate tossing of a coin,
where 0 and 1 represent the two sides of the coin.

31.	Write a program that randomly pulls cards from a pack of cards and prints both colour (spades, diamonds,
clubs, hearts) and value (2-10, jack, queen, king, ace). The colour and value of the card should be printed.

32.	Start from the equation program earlier in this chapter. Solve the equation:
x2 - 8x + 15 = 0

33.	Write a program that solves the equation of 3rd degree (3 roots):
x3 - 9x2 + 23x - 15 = 0

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

